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AbstracC-A boundary element formulation for planar. time-dependent. inelastic deformation problems for
bodies with cutouts is presented in this paper. A stress function description for these nonlinear problems
leads to a non-homogeneous biharmonic equation for the stress function rate. An integral representation of
the solution uses modified kernels which guarantee that the cutout boundary is traction free for all time.
This incorporation of the effect of the cutout on the stress field into the kernels leads to an accurate
determination of stresses in the near field of the cutout. Illustrative analytical examples for circular plates
with circular cutouts are presented in this paper. In a companion paper[l41. numerical solutions are
presented for problems of finite plates with very narrow elliptic cutouts. These problems are of consider­
able importance in inelastic fracture.

INTRODUCTION

The boundary element method (BEM-also called the boundary-integral equation method) has
been applied quite extensively to problems of elasticity and elastic fracture mechanics (see, e.g.
Refs. [1,2]), but applications to nonlinear inelasticity problems have been relatively few. The
authors of this paper together with others, have been interested in the application of the BEM
to problems of time-dependent inelastic deformation[3-7]. Planar problems are considered in
Refs. [3-6] and plate bending problems in Ref. [7]. In these papers, the governing differential
equations are written in terms of rates and material behavior is assumed to be described by one
of a new class of combined creep-plasticity constitutive models using state variables, proposed
recently by several researchers. The constitutive model due to Hart [8,9] has been used in most
of the numerical examples presented in these papers. (See Refs. [3,4] for references to other
such constitutive models.)

This approach appears very useful since these new constitutive models attempt to describe
inelastic deformation in metals more faithfully than is possible with traditional models which
separate plastic and creep strains, while, in most cases, their mathematical structure permits a
particularly simple boundary element scheme. Thus, this approach seems to combine the twin
advantages of using a more realistic constitutive model to describe material behavior, together
with an efficient scheme for the solution of boundary value problems of practical importance.

The mathematical structure of many of the state variable models of inelastic deformation
can be summarized by the following equations

(1,2)

(3,4)

Here Eij, Eij and E~ are the elastic, non-elastic and thermal strain rates respectively, (Tjj is the
stress tensor, T is the temperature and q1tl are state variables. The number of state variables
varies in the different models and they can be scalars or tensors. These state variables are
assumed to completely characterize the present deformation state of the material and the
history dependence of the rate of non-elastic strain up to the current time is assumed to be
completely taken into account by their current values. It is important to note that the rates of
the non-elastic strain and state variables at any time depend only on the current values of the
stress, state variables and temperature. The usual equations of time-hardening and strain­
hardening creep also fit into this general format.

The kernels used in the integral equations in Refs. [3-6] are the usual Kelvin traction and
displacement functions for unit point loads in an infinite region. In the numerical procedure,
boundary conditions along outside as well as inside boundaries (in multiply connected bodies)
are satisfied at discrete points. This formulation generally gives very good numerical results
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except in a narrow region along the boundary. In non-elastic problems, the nonelastic strain
rates are typically proportional to high powers of stress and the nonelastic strain rates over the
entire region contribute to the rates of stress and displacement. Moreover, in problems with
regions of high concentration of stresses and stress gradients, such regions provide nearly all
the nonelastic contribution to the stress and displacement rates. It is imperative. therefore. that
stresses in these regions be calculated sufficiently accurately if the time histories of stresses and
displacements are to be obtained with acceptable accuracy.

Inelastic deformation problems for plates with sharp cutouts are of considerable practical
interest. Some regions near these cutouts are typically regions of high stress concentration. A
numerical procedure using the boundary element method with Kelvin kernels (e.g. [5]) would
usually require a large number of boundary elements in such regions in order to obtain the
stresses accurately near the cutouts. This number can become prohibitive for problems of
plates with cracks and this may lead to numerical difficulties.

An alternative OEM formulation for planar elastic problems for bodies with cutouts has
been presented recently[10-12]. In this approach, the Kelvin kernels are augmented so that the
new kernels are the fundamental solutions of the governing differential equations for infinite
regions with cutouts. Thus. the effect of the cutout on the stress and displacement fields is
incorporated into the kernels of the integral equations. Use of an appropriate kernel can
guarantee, for example, a traction free crack in a given region and discrete modelling of the
crack boundary is no longer necessary. The methods of Muskhelishvili[13] are used to obtain
these augmented kernels and this approach leads to an accurate determination of stresses,
especially in the near field of the cutout.

The linear superposition principle in valid in linear elasticity and is used to advantage in this
alternative formulation for elastic problems. Also, the augmentation of Kelvin kernels for
Navier's displacement equations is a natural in elastic problems. In Refs. [11,12], for example,
an applopriate layer of body force is applied on the outside boundary of a body in order to
satisfy the boundary conditions. Physical body forces (e.g. centrifugal forces) if present, can
also be taken care of in a similar fashion. The subject of the present paper, however, is
nonlinear inelasticity problems where the presence of inelastic strains causes the elastic strain
fields to become incompatible. The total strains, of course, must be compatible.

A OEM formulation using augmented kernels, suitable for the solution of planar time­
dependent inelastic problems, is presented in this paper. A stress function description is used
and writing the equations in terms of rates leads to a nonhomogeneous biharmonic equation for
the stress function rate. The nonhomogeneous term in this equation results from the presence
of nonelastic strains. This equation is transformed into an integral equation by using, as kernels,
two fundamental solutions of the biharmonic equation. The unknown functions are two
concentration layers on the boundary of the body and these are obtained from the traction
boundary conditions of the problem. The augmented kernels that guarantee traction free
cutouts are obtained by Muskhelishvili's methods. The explicit augmented kernels for circular
cutouts are derived and these are used in an analytical illustrative example for inelastic
deformation of a circular disc with a circular cutout. In a companion paper[141. the kernels for
an elliptical cutout are derived and numerical results are presented for several cracked plates in
plane stress subjected to normal or shearing stresses on the boundary. The time-dependent
redistribution of stress fields near the cracks are studied in these numerical examples. Either
power law creep or the constitutive model due to Hart [8, 9] are used in the numerical
calculations. Other constitutive models having the mathematical structure of eqns (I )-(4) can be
easily incorporated into the computer program that generates these numerical results.

GOVERNING DIFFERENTIAL EQUATIONS

A planar body is considered with the XI and X2 axes in the plane of the body and the X3 axis
normal to it. A stress function <II is defined in the usual way

(5)

where 0'1 J, 0'22 and 0'12 are the stress components.
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The strain rates are decomposed into elastic and nonelastic components as in eqn (I) (the
thermal strain rates are set to zero for simplicity). Using Hooke's law to relate the rates of
elastic strains and stresses and the compatibility equation in rate form

(6)

results in an inhomogeneous biharmonic equation for the rate of the stress function

(1)

The function 0") has the forms

[
a2

'" a2
.,. iP'"]0'" = - E "f~, + "f~2 - 2" f,,'2 for plane stress (0'33 = 0)

UX2 dX, liXldX2

E [a
2
'" a

2
'" 2a

2
'" ]0")=-~ af~l+ "ff-

a
~'2+I'V2(E~I+E~2) for plane strain (fn=O)

- I' X2 dX, X,UX2

with E and If the Young's modulus and Poisson's ratio, respectively, of the material of the body
and Vthe gradient operator.

The admissible boundary conditions for the problems considered in this paper are pres­
cribed histories of traction on the outside boundary of the body.

BOUNDARY ELEMENT FORMULATION

Simply connected body
The biharmonic eqn (7) can be transformed into an integral equation by using two singular

solutions o(this equation, s21n s and its normal derivative at a field point, (a/anQ)(s2In s)

Here C, and C2 are unknown concentration functions to be determined from boundary
conditions and s is the distance between the source pointp (or P)and the field point q (orQ), where
lowercase lettersdenote points inside the body Bandcapital letters denote pointson its boundary aB
(see Fig. I).

It is convenient to rewrite this equation in terms of complex variables with a view towards
conformal mapping techniques that will be used later to derive the necessary augmented kernels.
This has the form (see Fig. I).

where

K. =Re [i~.(z, zo) +X.(z, zo))

K2= Re {i~2(Z, zo) +X2(z, zo)]

~.(z, zo) = (z - zo) In (z - zo)

X1(z, zo) =- io<z - zo) In (z - zo)

• a • • a •
eMz, zo) =-a (Mz, zo), X2(z, zo) =-;- X,(z, zo)

no uno

where no is the outward normal at the field point Zo on the boundary aB, Re denotes the real
part of the complex function within brackets and a superscribed bar denotes the complex
conjugate.
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&6
Fig. I.

The primary interest in the problems is the determination of stresses rather than the stress
function. Thus, it is convenient to write the corresponding equations for stress rates. Also,
when the traction equations are written for a point Z on the boundary, care must be taken to
include residues, if any, that are generated from singular kernels. These matters will be given
careful attention in the next section when the equations for multiply connected regions using
augmented kernels are presented.

Body with cutout
Augmented kernels. The singular kernels K1 and K2 in eqn (9) are augmented with regular

kernels so that the sum of these guarantee a traction free inner boundary in a body with cutout.
The new kernels are derived by using the methods of Muskhelishvili[13]. The approach is
similar to that used in Refs. [11, 12] for the analogous elastic problem and will be briefly outlined
here.

Consider an infinite plane with a cutout of contour aB. (Fig. 2). The traction resultants F,
and F2 on aportion of arc AB on aB\ due to the functions ~ and Xare (13, 15) (~can be either ~\ or
~2 of. eqn (9) and similarly for X)

F, +iF2= I: (T, + iT2) de

= -i[~(Z, zo) + -Z~-:-"(-Z-,z-o)+ ~(Z, ZO)]..8 (10)

where TI and T2 are the components of traction at a point Z in AB on aB It de is an element of
the curve aB. and "'(z, Zo) = X'(z, zo), the prime denoting differentiation with respect to the
variable argument z. If a mapping function

Z = w(~) (11)

can be found which maps the region on and outside aB. in the z plane to a region on and inside
an unit circle 'Y in the ~ plane, the expression within brackets on the right hand side of eqn (10)

Fig. 2.
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at a point Z =a on oBI can be written as

• w({3) -.,- -.-
- F({3, zo) =f({3, zo) +== f ({3, zo) + g({3. zo)

w'({3)

where
ci>(z. zo) = i(~, zo)

~(z, zo) = g(~. zo)

(12)

the point z =a maps to a point ~ ={3 on the unit circle 'Y and i' =(d/d~)i(~, zo)·
In the physical problem under consideration, the contour aBI must be traction free. Thus,

new functions ,p*(z, zo) and "'*(z. zo) must be obtained such that. the tractions due to

and
,p(z, zo) = ci>(z, zo) + ,p*(z, zo)

"'(z, zo) =~(z, zo) + "'*(z, zo)

vanish on the contour oBI' The problem, therefore, reduces to the determination of ,p* and "'*
such that

!*({3, zo) + w({3) {*'((3, zo) + g*({3, zo) = F({3, zo)
w'({3)

where, as before, ,p*(z, zo) = {*(~. zo) and similarly for g*.
This problem has the solution[13]

{*({, zo) = ~,( F(@,zo)d{3 __I. ,(~{*'((3, zo) d{3
2m Jl' {3 - { 2m Jl' w'({3) {3 - {

*(~ ) = _I ,( F(@,zo)d{3_I,( w(ll) {*'(Il, zo) dfJ
g ~,zo 2'lTi Jl' {3 - { 2'lTi Jl' w'({3) {3 - { ~.

(13)

(14)

(15)

The specific example for a circular cutout follows. If the contour oBI is a unit circle in the
z plane, the appropriate mapping function is

wW= I/{

In this case, for the functions ci>1 and XI of eqn (9),

( I ) (I ) I - I -F({3, zo) =- p- Zo In p- Zo - pIn ({3 - zo) - P+ Zo In ({3 - zo) + Zoo (16)

The second term in eqn (14) vanishes and the second term in eqn (IS) becomes e3f*'(e, zo).
Solving for !* and g*, the kernels, within additive functions of Zo, are

,p1(Z, zo) =(z - zo) In (z - zo)+ Zo In (!- 10) - ZIn (1- :.) (17)
z zZo

"'I(Z, Zo) = -10 In (z - zo) - G-10) In (~- 10) - ~(I + In (- zo»

+!In(I-'-'!-')+ Zo + I (IS)
Z z10 z2(1 - zzo) z(zzo - I)

and
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Since stresses involve derivatives of these functions with respect to z, the additive functions of
Zo are of no consequence. It can be easily verified that

on any point Z=a on the circle /Z/ =1, i.e. the tractions due to these functions vanish on aBI.
Single valued displacement on inner boundary. The displacement vector u must be single

valued on the boundary of the cutout oBI in Fig. 3, i.e. it is required that

(19)

In the presence of nonelastic strain rates in the body but with zero tractions on aBJ, this
condition, in terms of the rate of the stress function, gives rise to three equations for plane
strain problems.

J. .E.- (V2<i» de = J. I1n) • n de (20)
hB,dn hBI

J. (X2 dd - XI dd )V2<i> de = J. x2(l1nl
• n) de - 1~ 2 [J. E~, dXI + E~2 dX2 + II(E~I + E~2) dx, JhBI n c hBI " hBI

(21 )

J. (XI: + X2: ) v2<i> de =J. xJ(l1n
) • n) de + 1~JI2 [J. E~2 dXI + E~2 dX2 + "(E~I + E~2) dX2JhBI n c hBI hBI

(22)
where

Note that V. I1n) = en).

The equations for plane stress have exactly the same form with " set equal to zero.
These equations are derived in a manner analogous to the elastic case. The first of these

equations is a statement of zero net rotation around the boundary oBJ, while the second and
third guarantee, respectively,

where Wl2 = U2.1 - UI,2 is the rotation in the plane of the body. For a discussion of the elastic
situation, see, for example, Timoshenko and Goodier[15].

It is noted that if Fig. 3, in fact, represented a simply connected body, the field eqn (7) would
be valid everywhere including the region B1 and the eqns (20H22) for single valued displace-

Fig. 3.
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ments would be satisfied on the boundary aB,. In fact, in such a case, eqns (20H22) on aBI can
be derived directly from eqn (7) in B, by using Green's theorem and the divergence theorem,
provided these theorems are applicable. This matter will be alluded to in the next section.

Integral equations for stresses and tractions
The stress rates in a body with a cutout (Fig. 4) are written as (with i, j =1,2)

81fu//{p) =1. H~JI(p. Q)el ( Q) dCQ +1. H~JI(p, Q)C2( Q) dCQhBz hBz
+ f mJI(p, q)celt)(q)dAq - 1. HU'(p, Q)D,,(It)(Q)nt(Q)dco (23)

1B hBI

where the augmented kernels Hlt l, k=1,2, are

HW(z, zo) = Re[2q,i(z, %0) - iq,'f.{z, %0) - !/Il(z. :0)]

H~I(Z, zo) = Re[2q,l(z, :0)+ iq,'f.{z, %0) +!/Il(z, %0»

H\*i(z, Zo> =Im{iq,'f.{z, ZO> + l/Il<z, zo».

The first three terms on the right hand side are analogous to those in eqn (9). The last term
represents a layer of concentration n' [)fltl on the cutout boundary aB, and is included with a

n

Fig. 4.

view towards obtaining single valued displacements on this boundary. This term is motivated as
follows. As stated in the last section, a simply connected region would require a concentration
distribution celt) throughout the body B +B. Thus, if the divergence theorem is applicable in the
region B.

the negative sign being a consequence of the direction of the IlOrmal BI in rig. 4. In the
body with a cutout, however, Bis a forbidden zone and n'l)I' is distributed on aB. instead. It is
postulated that inclusion of this term in eqn (23) leads to satisfaction of eqn (19). While a direct
proof of this conjecture has not yet been possible, correct expressions for stress rates are
obtained in an analytical example of a circular disc with a circular cutout, presented later in this
paper, and numerical results for a square plate with an elliptical cutout, presented in the
companion paper[l4l, agree well with those obtained from a direct formulation of the problem
with Kelvin kernels of Navier's equations[5j. Note that the corresponding elastic problem has
cellI =0, the last two terms of eqn (23) vanish, and the first two give the correct solution.

Using C<"~q) =Dt'l(q) in the area integral in eqn (23) and applying the divel1ence theorem.
eqn (23) can be written in a more convenient form where [)fill, with first derivatives of the strain
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rates, rather than c<n), with second derivatives, appear

Here the ko in the last term denotes differentiation of H~l) with respect to the field point.
The boundary conditions of the problem must be specified in terms of traction histories on

iJB2•The traction rates i j are obtained from eqn (24) by taking the limit as pin B approaches apoint P
on iJB2• If iJB2 is locally smooth at P,

87TTj(P) = 1. Hlll(P, Q)nj(P)C1(Q) dCQ +1. H~l)(p, Q)nj(P)C2( Q) dCQhB2 hB2

+1. H\]I(P, Q) D.,nl(Q)nj(P)n.(Q) dCQ
hB2

- fBHllMP,q)D~~)(q)nj(p)dAq (i,j,k=1,2) (25)

The first three integrals in the above equations must be interpreted in the sense of Cauchy
principal values. It can be shown that the limiting process does not yield residues in the above
equation for traction rates. In case of boundary stress rates, however, while the equations for
normal and shearing stress rates do not yield a residue, the one for the tangential stress rate
yields a residue of 47TC2 as P approaches P on the boundary where it is locally smooth, i.e. if
81T1Tcc (P*) = h(p*) then

where p* is infinitesimally close to P*.

ILLUSTRATIVE EXAMPLES

Solid circular disc under uniform axisymmetric external load-elastic solution (plane strain or
stress)

The problem under consideration here is that of a circular disc of radius b under an
axisymmetric external load Po per unit area (Fig. 5). Since the region is simply connected, the
formulation presented in eqn (9) is used with en) = 0 for the elastic case. Using polar
coordinates, the stresses at an inside point pare

(26)

Fig. 5.
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where the kernels corresponding to KI and K2 of eqn (9) are

HUI = 2(1 + In s) ::;: r cos 2a +e2 cos 2(8~ a) - 2pr cos (8 +20:)
s

Hill _ - r sin 2a - e2 sin 2(8+ a)+2er sin (8 + 2a)
12 - s2

HW =2(e - r cos 8) + - 2e cos 2(8+ a) +2r cos (8 +2a)
22 S2 - S2

2
± -::4 {er cos 2a + p3 cos 2(8+ a) - 2p2r cos (8+ 2a) - r3 cos 2a cos 8s

- p2r cos 2(8 + a) cos 8+ 2pr cos (8 +2a) cos 8}

Ht21 _ - 2p sin 2(8 + a) +2r sin (8 + 2a)
12 - S2

+~ {er sin 2a + p3 sin 2(8 + a) - 2p2r sin (9+ 2a)- r3 sin 2a cos 9
s

- e2r sin 2(9 + a) cos 9+2pr sin (9 +2a) cos 8}.

The symbols are shown in Fig. 5 and S2 = p2 + r - 2p, cos 8.
For a point P on the boundary,

81TPO cos a =81T'TI(b, a)

(2"=Ct(b) Jo [HW(b, a; b, 9) cos a + HW(b, a; b, 9) sin alb d8

(2"
+ C2(b) Jo [H\11(b, a; b, 8) cos a + H\¥(b, a; b, 8) sin alb d9

81TPosin a =81T'T2(b, a)

L
2
"=Ct(b) 0 [HW(b, a; b, 8) cos a + H~V(b, a; b, 9) sin alb d6

(2"
+Cib) J

o
[H\¥(b, a; b, 6) cos a + H~(b, a; b, 9)sin alb d9.

(27)

(28)

The nonvanishing entegrals of these kernels, used in the equations, are given in Table 1.
Using these, both eqns (27) and (28) give

and, from eqns (26)

0'11(', a) =(I/2)[Cl b(l +In b)+ Cll =Po

0'22(" a) =Po, 0'12(', a) =O.

(29)

The stresses on the boundary can be obtained from eqn (26) by taking the limit P... P. In this
case, the appropriate residues 411' sin2 aC2, 417' cos2 aC2 and - 417' sin a cos aC2 (corresponding
to 41TC2for the tangential stress UH) must be included. This gives, for example,

and finally

O'lI(b, a) =un(b, a) =Po, UI2(b, a) =0

as expected.
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Table 1. Non·vanishing integrals of kernels IRef. 16J for solid circular disc

SIGN [(0) f" [(O)dO

Hill H'" p>r p=rII "
+ + 2(1 + In 5) 41T(I + In p) 41T(I +In r)

H'li Hill
II ~~

2(p - r cos 8) 41T 21T
+ .,.

52 P r
- 2p cos 2(8 +a) +2r cos (0 +2a)

0
?1T

+ . =-cos 2a
S- r

ffls' - 2p sin 2( Ii +a) +2r sin (0 +2a)
0 21T . 2

52
-Sin cr
r

Circular disc with concentric circular cutout under uniform axisymmetric external load-inelastic
plane stress solution

A circular disc of radius b with a concentric circular cutout of unit radius is subjected to an
axisymmetric external load history Po(t) (Fig. 6). The governing equation in polar coordinates
for this problem is

and

~4,t,. 0"(0) E d [° 0 '0 dE~]v "'==L.' :::-- £ -£88-r-
r dr" dr (30)

(31)

The equation for stress rates (23), with the source point p on the XI axis (this can be done
without loss of generality for this axisymmetric problem) and C2(b)::: 0 (using only CI(b) is
sufficient here because ofaxisymmetry) give

(32)

For this point on the XI axis, all ::: a rn (122::: a88 and a12::: ar6' The augmented kernels H;j are
obtained from eqn (23) using the stress functions 4>1 and l/JI from eqn (18). They are rather
lengthy and will not be given here.

Xz

Fig. 6.
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The traction equations for a boundary point Pare

12.. 1"12
"811'Po=81ritCb)=C.Cb) 0 HWCb;b,O)bd8+ • 0 HWCb;p,O)Cnl(p)pdOdp

1
2.

+ D,tltl(l) 0 HWCb; t, 8) dO (33)

and the expression for 0=811'12Cb) is similar with HW replaced by HW everywhere.
The nonvanishing integrals of the kernels, in this case, are listed in Table 2. Using these, eqn

(32) on the boundary can be solved for CtCb) to give

2b ' CO'" (b) E 1" ('It'" )_ 110 (Ill _ c.ElNJ _ E,,-ElNJ ."
Ct(b)-(b2-l)(1+lnb) D, (b) b(l+lnb) b(b2-l)(l+lnb) t P +PEzz dp.

(32)

Substituting for et(b) into eqn (32) gives the equations for stress rates

which were derived earlier by direct methods[17].

Table 2. Non·vanishing integrals of kernels (Ref. 161 for annular disc

SIGN f" fIe) de

HW H~Y p>r p"'r p<r

+ + 2(1+los) 4"(l +In p) 4"(1 +In r) 4"(l +In r)

+
r(r- p cos e)

0 'IT 2"s"
+ e2cos 2e-prcos 8 0 -'IT - 211p'/fJS2

+
2(1 +Inp) 41l'(1 +Inp) 4"(1 +In r) 41l'(I +Inp)

1"2 fJ jJ jJ

CONCLUSIONS

A boundary element formulation using augmented kernels is presented here for problems of
planar, inelastic deformation of plates with cutouts. In this approach. two fundamental
solutions of the biharmonic equation are augmented so that the resultant kernels yield the stress
distributions for point concentrations in an infinite plate with a traction free cutout. Thus, the
effect of the cutout on the stress field is incorporated into the kernels and the cutout boundary
need not be modelled discretely in a numerical application. The specific kernels for a plate with
a circular cutout are derived. Analytical illustrative examples for a uniform circular plate
undergoing elastic deformation and a circular plate with a circular cutout undergoing inelastic
deformation are carried out and the formulation is shown to yield the correct expressions for
stresses in these cases. Numerical solutions for finite plates with elliptic cutouts, with ap­
plications to inelastic fracture mechanics. are presented in a companion paper[l4].
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